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Abstract

We prove that the genus expansion of solutions of the WDVV equation constructed from dGBV algebras satisfies the differential
equation determined by the Belorousski–Pandharipande relation in cohomology of the moduli space of curvesM2,3.
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1. Introduction

In papers [3,4], the algebraic formalization of Zwiebach invariants gives a purely algebraic construction of the
genus expansion of solutions of the WDVV equation in terms of cH-algebras. Since we know that Zwiebach invariants
induce Gromov–Witten invariants on subbicomplexes with zero differential, it is naturally of concern to check different
relations coming from the geometry of the moduli space of curves.

In Gromov–Witten theory, we represent a solution of the WDVV equation as a generating function for genus
0 Gromov–Witten invariants of a suitable algebraic variety (without ψ-classes). Then we consider Gromov–Witten
invariants with ψ-classes and in arbitrary genus. In this approach, any relation among natural strata in cohomology
of the moduli space of curves gives us a differential equation for the Gromov–Witten potential. This property is just a
corollary of the splitting axiom.

In our construction, we do not have a definition that can be compared with the full Gromov–Witten potential. We
just define genus expansion with descendants (ψ-classes) only at one point. But some relations from Gromov–Witten
theory are already nontrivial even for this reduced genus expansion. In particular, it is enough to have descendants at
one point to pose a question on Belorousski–Pandharipande relations among codimension 2 strata inM2,3 [1].

In this paper, we prove that our genus expansion satisfies the differential equation defined by the
Belorousski–Pandharipande relation. In fact, it is the unique currently known relation in genera ≤2 that makes sense
in our construction and that we have not yet checked in [3,4].
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Since this paper is just a sequel to [3,4], we refer the reader to those papers for the origin, motivation, and more
detailed exposition of the new construction that we study here. Also we mention that in this paper we retain all earlier
mathematical problems of this theory such as the lack of examples and the problem of convergence.

This paper is organized as follows. In Section 2, we recall our construction of genus expansion (in fact, only its
parts used in this paper). In Section 3, we recall the Belorousski–Pandharipande relation and formulate our main
theorem. In the rest of the paper, we prove (or rather outline the proof of) our theorem.

2. Construction of the potential

In our case, the Belorousski–Pandharipande relation is a differential equation for four different formal power series:
generating functions for the correlators in genera 0, 1, and 2 without descendants (Φ0, Φ1, and Φ2, respectively), and
the generating function for the correlators in genus 2 with one descendant at one point (Φ(1)

2 ). Our goal in this section
is to define these four formal power series.

In Section 2.1 we explain what a cH-algebra is and fix notation for all necessary operators in it. In Section 2.2
we explain how we use graphs to encode tensor expressions. In Section 2.3 we fix notation for all tensors in cH-
algebras that we use in this paper. Also we discuss there a subtlety related to the signs. Then in Section 2.4 we
define Φ0, Φ1, Φ2, and Φ(1)

2 , and give precise formulas (in terms of graphs) for the first few terms of these power
series.

In fact, it can also be useful to study the definition of the full potential with descendants only at one point given
in [4]. But the full definition given there is rather involved and appears to be natural only in the course of the
calculations in [4] or in the framework of Zwiebach invariants [3].

2.1. cH-algebras

In this section, we recall the definition of cH-algebras [3,4]. A supercommutative associative C-algebra H is called
a cH-algebra if there are two odd linear operators Q,G−: H → H and an integral

∫
: H → C satisfying the following

axioms:

(1) Q2
= G2

− = QG− + G−Q = 0;
(2) H = H0 ⊕ H4, where Q H0 = G− H0 = 0 and H4 is represented as a direct sum of subspaces of dimension 4

generated by eα, Qeα,G−eα, QG−eα for some vectors e ∈ H4, i.e. H4 =
⊕

α 〈eα, Qeα,G−eα, QG−eα〉 (Hodge
decomposition);

(3) Q is an operator of the first order, it satisfies the Leibniz rule: Q(ab) = Q(a)b + (−1)ãaQ(b) (here and below
we denote by ã the parity of a ∈ H );

(4) G− is an operator of the second order, it satisfies the seven-term relation: G−(abc) = G−(ab)c +

(−1)b̃(ã+1)bG−(ac)+ (−1)ãaG−(bc)− G−(a)bc − (−1)ãaG−(b)c − (−1)ã+b̃abG−(c);
(5) G− satisfies the property called the 1/12-axiom: str(G− ◦ a·) = (1/12)str(G−(a)·) (here a· and G−(a)· are the

operators of multiplication by a and G−(a) respectively).

We define an operator G+: H → H . We put G+ H0 = 0; on each subspace 〈eα, Qeα,G−eα, QG−eα〉, we define
G+ as G+eα = G+G−eα = 0, G+Qeα = eα , and G+QG−eα = G−eα . We see that [G−,G+] = 0; Π4 = [Q,G+]

is the projection to H4 along H0; Π0 = Id − Π4 is the projection to H0 along H4.
An integral on H is an even linear function

∫
: H → C. We require

∫
Q(a)b = (−1)ã+1

∫
aQ(b),

∫
G−(a)b =

(−1)ã
∫

aG−(b), and
∫

G+(a)b = (−1)ã
∫

aG+(b). These properties imply that
∫

G−G+(a)b =
∫

aG−G+(b),∫
Π4(a)b =

∫
aΠ4(b), and

∫
Π0(a)b =

∫
aΠ0(b).

We can define a scalar product on H : (a, b) =
∫

ab. We suppose that this scalar product is non-degenerate. Using
the scalar product we may turn an operator A : H → H into a bivector that we denote by [A].

2.2. Tensor expressions in terms of graphs

Here we explain a way to encode some tensor expressions over an arbitrary vector space in terms of graphs.
Consider an arbitrary graph (we allow graphs to have leaves and we require vertices to be of degree at least 3).

We associate a symmetric n-form with each internal vertex of degree n, a symmetric bivector with each edge, and a



S. Shadrin, I. Shneiberg / Journal of Geometry and Physics 57 (2007) 597–615 599

vector with each leaf. Then we can substitute the tensor product of all vectors in leaves and bivectors in edges into
the product of n-forms in vertices, distributing the components of tensors in the same way as the corresponding edges
and leaves are attached to vertices in the graph. This way we get a number.

Let us study an example:

a

b
c

(1)

We assign a 5-form x to the left vertex of this graph and a 3-form y to the right vertex. Then the number that we get
from this graph is x(a, b, c, v, w) · y(v,w, d).

Note that the vectors, bivectors and n-forms used in this construction can depend on some variables. Then what we
get is not a number, but a function.

2.3. Usage of graphs in cH-algebras

Consider a cH-algebra H . There are some standard tensors over H , which we associate with elements of graphs
below. Here we introduce the notation for these tensors.

We always assign the form

(a1, . . . , an) 7→

∫
a1 · · · · · an (2)

to a vertex of degree n.
There are a collection of bivectors that will arise below at edges: [G−G+], [Π0], [Id], [QG+], [G+Q], [G+], and

[G−]. In pictures, edges with these bivectors will be denoted by

, , , QG+ , G+ Q , G+ , G− , (3)

respectively. Note that an empty edge corresponding to the bivector [Id] can usually be contracted (if it is not
a loop).

The vectors that we will put at leaves depend on some variables. Let {e1, . . . , es} be a homogeneous basis of H0.
With each vector ei we associate two formal variables, T0,i and T1,i , of the same parity as ei . Then we will put at a
leaf either the vector E0 =

∑
ei T0,i (denoted by an empty leaf) or the vector E1 =

∑
ei T1,i (denoted by an arrow at

the leaf).

2.3.1. Remark

There is a subtlety related to the fact that H is a Z2-graded space. In order to give an honest definition we must do
the following. Suppose we consider a graph of genus g. We can choose g edges in such a way that the graph being
cut at these edge turns into a tree. To each of these edges we have already assigned a bivector [A] for some operator
A: H → H . Now we have to put the bivector [J A] instead of the bivector [A], where J is an operator defined by the
formula J : a 7→ (−1)ãa.

In particular, consider the following graph (this is also an example of the notation given above):

(4)

An empty loop corresponds to the bivector [Id]. An empty leaf corresponds to the vector E0. A trivalent vertex
corresponds to the 3-form given by the formula (a, b, c) 7→

∫
abc.

If we ignore this remark, then what we get is just the trace of the operator a 7→ E0 · a. But using this remark we
get the supertrace of this operator.
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In fact, this subtlety will play no role in this paper. It affects only some signs in calculations and all these signs will
be hidden in lemmas shared from [3,4]. So, one can just ignore this remark.

2.4. Construction of Φ0, Φ1, Φ2, and Φ(1)
2

Now we describe Φ0, Φ1, Φ2, and Φ(1)
2 using the notation given above.

The formal power series Φ0 (Φ1, Φ2) is just the sum over all trivalent graphs of genus 0 (1, 2, respectively) with
empty leaves and edges with thick black dots. By each graph we put a coefficient equal to the inverse of the number
of its automorphisms.

(5)

(6)

(7)

The formal power series Φ(1)
2 is the sum over graphs of genus 2 with edges with thick black dots satisfying some

additional conditions. First, there is exactly one vertex of degree 4 and all of the vertices are trivalent. Second, at this
vertex of degree 4, there is a leaf with an arrow. Third, all other leaves are empty. Each graph is weighted with the
inverse of the number of its automorphisms fixing the leaf with the arrow.

+
1

4
+

1

2
+

1

4
+

1

4
+ . . . (8)

In fact, in order to obtain an expression for Φ(1)
2 one can just take the expression for Φ2 and add an additional leaf

with an arrow in all possible ways to each graph. Also it is obvious that Φ(1)
2 is linear in T1,i , i = 1, . . . , s.
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3. Belorousski–Pandharipande relation

3.1. Notation

The Belorousski–Pandharipande relation is a relation in (co)homology ofM2,3 between the cycles of natural strata
of complex codimension 2 inM2,3. Below, we list the strata participating in the Belorousski–Pandharipande relation:

Δ 1 =
2

Δ 2 =
2

Δ 3 = 2 Δ 4 = 2

Δ 5 =
1

1

Δ 6 =
1

1

Δ 7 =
1

1

Δ 8 =
1

1

Δ 9 =
1

1 Δ 10 =
1

1 Δ 11 =
1

1 Δ 12 =
1

Δ 13 =
1

Δ 14 =
1

Δ 15 =
1

Δ 16 =
1

Δ17 =
1

Δ18 =
1

Δ19 = 1 Δ20 = 1

We explain our notation. Note that the graphs here have completely different meaning to all other graphs in this
paper. We use the language of dual graphs, that is, vertices correspond to irreducible curves, edges correspond to
points of intersection, leaves correspond to marked points. A thick vertex labeled 2 corresponds to a genus 2 curve; a
thick vertex labeled 1 corresponds to a genus 1 curve. A simple vertex corresponds to a genus 0 curve. An arrow on
an edge or a leaf means that we take the ψ-class at the destination of the arrow.

This way to describe strata in the moduli space of curves was introduced by E. Getzler, see [2].
For example, consider the picture of ∆1. A generic point of this stratum is represented by a three-component curve

such that one component has genus 0; there is one marked point on this curve and two other curves intersect it. One
of the other curves has genus 0 and two marked points; another curve has genus 2 and no marked points.

Another example. We consider the picture of ∆2. A generic point of this stratum is represented by a two-component
curve; one component has genus 0; there are three marked points and one point of intersection with another curve.
Another curve has genus 2; there are no marked points, but we take theψ-class on this curve at the point of intersection.

One more example is the picture of ∆3. A generic point of this stratum is represented by a two-component curve;
one curve has genus 0, two marked points, and one point of intersection with another curve. Another curve has genus
2, one point of intersection with the first curve, and one marked point with the ψ-class.

3.2. The relation

We recall the Belorousski–Pandharipande relation:

−4∆1 + 12∆2 + 6∆3 − 6∆4 +
12
5

∆5 −
12
5

∆6 +
24
5

∆7 −
36
5

∆8 −
36
5

∆9 +
18
5

∆10 −
12
5

∆11

+
1

10
∆12 −

3
10

∆13 +
3
10

∆14 −
1

10
∆15 +

6
5
∆16 −

6
5
∆17 +

2
5
∆18 −

3
5
∆19 −

1
5
∆20 = 0. (9)
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One can note that the coefficients in Eq. (9) do not coincide with the coefficients of the initial relation in [1]. This is
for two reasons. First, we do not weight the strata in the formula with the inverse order of the automorphism group of
their generic point. Second, we consider each possible enumeration of marked points only once, without multiplicities.
We refer the reader to [1] for the explanation of the conventions that we do not keep here.

3.3. Differential equation

As we have already explained in the introduction, the Belorousski–Pandharipande relation gives us a differential
equation for Φ0, Φ1, Φ2, and Φ(1)

2 . We illustrate this correspondence with examples.
If all variables are even, we have:

∆1  
∂Φ2

∂T0,i
ηi j

∂3Φ0

∂T0, j∂T0,a∂T0,k
ηkl

∂3Φ0

∂T0,l∂T0,b∂T0,c
+ 2 terms obtained by permutations of {a, b, c}, (10)

∆2  

(
∂Φ(1)

2

∂T1,i
−

∂2Φ0

∂T0,i∂T0,k
ηkl

∂Φ2

∂T0,l

)
ηi j

∂4Φ0

∂T0, j∂T0,a∂T0,b∂T0,c
(11)

∆3  

(
∂2Φ(1)

2

∂T1,a∂T0,i
−

∂2Φ0

∂T0,a∂T0,k
ηkl

∂2Φ2

∂T0,l∂T0,i

)
ηi j

∂3Φ0

∂T0, j∂T0,b∂T0,c

+ 2 terms obtained by permutations of {a, b, c}, (12)

and so on. The metric ηi j used here is given by the scalar product on H0. We have: ηi j = (ei , e j ), ηi j
= [Π0].

Note that ∆2 is defined with the help of one ψ-class onM2,1. Let π :M2,n →M2,1 be the projection forgetting
all marked points except for the first one. Then there is a formula relating ψ1 and π∗ψ1 onM2,n . So, the differential
expressions corresponding to these strata rely on this formula, which is exactly the first factor in Expression (11). The
same remark concerns ∆3, ∆4, and the pull-back of ψ1 fromM2,2. In this case, the required formula is the first factor
of Expression (12).

3.4. Theorem

We state our theorem.

Theorem 1. Φ0, Φ1, Φ2, and Φ(1)
2 satisfy the Belorousski–Pandharipande relation.

4. Proof

In this section we prove Theorem 1. The proof is organized in two steps. First we consider the differential equation
determined by the Belorousski–Pandharipande relation at the zero point. It is proved by a straightforward calculation
with tensors.

Then we can use the universal technique developed in [3]. That is, for any differential equation proved at the zero
point by the same type of calculation as given below, we immediately obtain its proof at any point. This was done very
carefully for the WDVV equation and less carefully for the Getzler relation in the last section of [3], and the argument
for the Belorousski–Pandharipande relation is literally the same.

So, in Sections 4.1 and 4.4 we discuss only the simplest case of the Belorousski–Pandharipande relation. In
Section 4.1 we rewrite it in terms of graphs; in Section 4.2 we explain what kind of calculation is to be done;
in Sections 4.3 and 4.4 we give an example of such a calculation for one stratum and discuss it for the other
strata.

Finally, in Section 4.5 we recall the basic idea from the last section of [3] that completes the proof of any relation
of this type.
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4.1. Relation in terms of graphs

Consider the degree 0 term of the power series obtained from Φ0, Φ1, Φ2, and Φ(1)
2 using the differential operator

determined by ∆i . Slightly abusing the notation, we denote it also by ∆i . Then we have:

Δ 1 =
1

16
+

1

8
+

1

8
(13)

Δ 2 =
1

12
+

1

8
(14)

Δ 3 =
1

16
+

1

8
+

1

8
+

1

4

+
1

8
+

1

8
+

1

8
(15)

and so on. We recall that a thick white point on an edge denotes the bivector [Π0] (or [JΠ0]).

4.2. Outline of the calculations

We explain the proof of the simplest case of Theorem 1. We have already expressed each ∆i at the zero point in
terms of graphs with one or two edges marked by [Π0]. Using the Leibniz rule for Q and the seven-term relation and
1/12-axiom for G−, we get out of [Π0] in our expressions. In this way we obtain an expression for each ∆i in terms
of 60 final graphs. Then we substitute these expressions in Belorousski–Pandharipande relation (9), and we see that
the coefficient of each final graph in this relation is equal to 0. This proves the simplest case of our theorem.

The final graphs are listed in Appendix A; final expressions for ∆i are given in Appendix B. Below, we explain
how to get out of [Π0] in our graphs by way of an example (we give detailed calculations for ∆3).
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4.3. Calculations for ∆3

We consider the right hand side of Eq. (15). Our goal is to get out of thick white points in these graphs. Finally, we
must obtain an expression in terms of graphs from Appendix A.

We carry out our calculations in two steps. At the first step we consider each graph of the right hand side of
Eq. (15) separately. At the second step we arrange the results of the first step and obtain an expression in final
graphs.

4.3.1. First step for the first picture

We recall that Π0 = Id − QG+ − G+Q. Also we note that if we have an edge (not a loop) marked by [Id], then
we can contract this edge. We have:

1

16
=

1

16
−

1

16 QG+
−

1

16 G+ Q
(16)

We recall that [Q,G−G+] = −G− and Qei = 0 for any i . Using these properties, the Leibniz rule for Q, and
taking into account the symmetries of our graphs, we have:

1

16 QG+
=

1

8 G+

G−
+

1

8

G−

G+

(17)

1

16 G+ Q
= 0 (18)

Therefore,

1

16
=

1

16
− −

1

8 G+

G− 1

8

G−

G+

(19)
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4.3.2. First step for all other pictures

The same calculations for all other pictures give us:

1

8
=

1

8
− −

1

8
G+

G−

1

8
G+

G−

− −
1

8 G+

G− 1

8 G+G−

(20)

1

8
=

1

8
− −

1

4

G+

G−

1

4

G+

G−

(21)

1

4
=

1

4
− −

1

4

G+

G−

1

4

G+

G−          

−
1

2

G+

G−

(22)

1

8
=

1

8
− − −

1

4

G+

G− 1

8

G+

G−

1

8

G+

G−

(23)
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1

8
=

1

8
− − −

1

4

G+

G− 1

8

G+

G−

1

8

G+

G−

(24)

1

8
=

1

8
− − −

1

4

G+

G− 1

8

G+

G−

1

8

G+

G−

(25)

4.3.3. Corollaries of the 1/12-axiom

In this section, we prove that some graphs in Eqs. (19)–(25) are equal to 0.

Lemma 1. Vector G− is equal to 0.

Proof. Indeed, from 1/12-axiom, it follows that

G− =
1

12

G− (26)

Since G−G−G+ = 0, the last vector is equal to zero. �

From this lemma, it is obvious that

G−

G+

= G+

G−

=

G+

G−

=

G+

G−

= 0. (27)

Lemma 2. For any i vector
ei

G−
is equal to 0.

Proof. First, we apply the 1/12-axiom, and then we apply the auxiliary lemma from [4]. We have:
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ei

G− =
1

12

eiG− =
1

12 G−
+

1

12

G− ei
(28)

Since G−G−G+ = 0 and G−ei = 0, the last two vectors are equal to zero. �

From this lemma, it is obvious that

G+

G−

=

G+

G−

= 0. (29)

4.3.4. Corollaries of the seven-term relation
In this section, we list some corollaries of the seven-term relation. We have:

1

8 G+

G−
+

1

8 G+

G−
+

1

4

G+

G− +
1

4

G+

G−

=
1
4

(30)

We prove this formula. For convenience, we split all these graphs into the same tensor pieces. We list the notation
for these tensor pieces:

(31)

Note that x, y, z are even vectors, but w is an odd one. Eq. (30) is equivalent to

1
8

∫
G−(x

2)yzw +
1
8

∫
G−(x

2 y)zw +
1
4

∫
G−(xyz)xw +

1
4

∫
G−(xz)xyw =

1
4

∫
G−(x

2 yz)w. (32)

Also note that G−(x) = G−(y) = G−(z) = 0. Then from the seven-term relation, it follows that

G−(x
2 yz) = 2G−(xy)xz + 2G−(xz)xy + G−(x

2)yz + G−(yz)x2 (33)

G−(x
2 y) = 2G−(xy)x + G−(x

2)y (34)

G−(xyz) = G−(xy)z + G−(xz)y + G−(yz)x . (35)

Substituting Eqs. (34) and (35) in the left hand side of Eq. (32), we get:
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1
4

G−(x
2)yzw +

1
2

G−(xy)xzw +
1
2

G−(xz)xyw +
1
4

G−(yz)x2w

)
. (36)

Substituting Eq. (33) in the right hand side of Eq. (32), we get exactly the same. This proves Eq. (32) and therefore
Eq. (30).

We prove in the same way that

1

8 G+G−
+

1

4

G+

G− =
1

8
(37)

1

4

G+

G−
+

1

4

G+

G−
=

1

6
(38)

1

4

G+

G−

+
1

8

G+

G−

= 0 (39)

1

4

G+

G−
=

1

12
(40)

1

2

G+

G−

+
1

8

G+

G−

+
1

8

G+

G−

= 0 (41)

4.3.5. Final formula for ∆3

Using Eqs. (15)–(41) and the notation for the final graphs from Appendix A, we get:

∆3 =
1
8

A1 +
1

16
A2 +

1
8

A3 +
1
8

F1 +
1
8

F2 +
1
8

F3 +
1
4

F4 −
1
4

D2 −
1
6

D3 −
1
8

H1 −
1
12

H2. (42)
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4.4. The other ∆i

We carry out the same calculation for all other ∆i . If there are two thick white points in graphs for ∆i , then we get
out of them successively. The results of these calculations are arranged in tables in Appendix B.

If we substitute all these expressions for ∆i in the Belorousski–Pandharipande relation, we get zero identically.
This proves our theorem.

For a much more detailed exposition of our calculations, see [5].

4.5. Reconstruction of the full proof

Now we explain what to do when parameters are not set to zero. In terms of graphs, this means that for any ∆i we
are to consider graphs with the same structure as before but with an arbitrary number of additional leaves.

In [3] the authors notice that these additional leaves can be gathered into some special operators. That is, instead of
considering graphs with an arbitrary number of additional leaves, we can consider the same graphs as in the simplest
case, but we replace the vectors E0 and E1 on leaves and bivectors [G−G+] and [Π0] on edges with new complicated
vectors and bivectors.

These new vectors and bivectors depend on parameters and can be written down explicitly in terms of the
Barannikov–Kontsevich solution of the Maurer–Cartan equation as is done in [3].

Here is one subtlety related to the strata with one ψ-class. At this step we have simultaneously switched from
ψ-classes to kinds of pull-backs of ψ-classes. But it was proved in [4] that these pull-backs are related to ψ-classes
via exactly the same formulas as in Gromov–Witten theory!

So, we take the same graphs as in the simplest case, we put new vectors on leaves and bivectors on edges, and we
must prove exactly the same relation as in the simplest case.

The main feature of this approach is that the properties of these new vectors and bivectors are almost the same as
the properties of E0, E1, [G−G+], and [Π0]. So we can just repeat our argument for getting out of thick white points
in graphs.

We refer the reader to the last section of [3] for the precise formulas for these new vectors and bivectors and lemmas
describing their properties. In fact, this reconstruction of the full proof works for a rather large class of differential
equations in cH-algebras; in particular all possible relations coming from the geometry of the moduli space of curves
are definitely in this class.
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Appendix A. Final graphs

A1 = A2 = A3 = B1 =
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B2 = B3 = C1 = C2 =

C3 = C4 = D1 = D2 =

D3 = E1 = E2 = F1 =

F2 = F3 = F4 = G1 =

G2 = H1 = H2 = H3 =

I1 = I2 = J1 = J2 =

J3 = K1 = K2 = L1 =
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L2 = M1 = M2 = M3 =

M4 = M5 = N1 = N2 =

N3 = N4 = N5 = O1 =

O2 = O3 = O4 = P1 =

P2 = P3 = Q1 = Q2 =

Q3 = R = S1 = S2 =
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S3 = T1 = T2 = U =

Appendix B. Results of calculations

A1 A2 A3 B1 B2 B3 C1 C2 C3 C4

∆1
1
8

1
16

1
8 −

1
8 −

1
12 0 0 0 0 0

∆2 0 0 0 −
1

24 −
1
36 0 0 0 0 0

∆3
1
8

1
16

1
8 0 0 0 0 0 0 0

∆4
1
8

1
16

1
8 0 0 0 1

8
1
8

1
4

1
8

∆5 0 1
24 0 0 0 0 0 0 0 0

∆6 0 −
1
8 0 0 0 0 −

1
8 −

1
8 0 −

1
8

∆7 0 0 0 0 0 0 1
4

1
4 0 0

∆8 0 1
8 0 0 0 0 0 0 0 1

4
∆9 0 0 0 0 0 −

1
24 0 0 0 0

∆10 0 1
8 0 0 0 0 −

1
8 −

1
8 0 1

8

∆11 0 1
8 0 0 0 1

8
1
8

1
8 0 −

1
8

∆12 0 0 0 0 0 0 0 0 0 0
∆13 0 0 0 0 0 0 0 0 0 0
∆14 0 0 0 0 0 0 0 0 0 0
∆15 0 0 0 0 0 0 0 0 0 0
∆16

1
12 0 1

12 0 0 0 0 0 0 1
4

∆17 −
1
4 0 −

1
4 0 0 0 0 0 −

3
4 −

3
4

∆18
1
4 0 1

4 0 0 0 0 0 3
2

3
4

∆19 0 0 0 0 0 1
12 0 0 0 0

∆20 0 0 0 0 0 −
1
4 0 0 0 0

D1 D2 D3 E1 E2 F1 F2 F3 F4 G1

∆1 0 0 0 0 0 0 0 0 0 0
∆2 0 1

8
1
12 0 −

1
16 0 0 0 0 0

∆3 0 −
1
4 −

1
6 0 0 1

8
1
8

1
8

1
4 0

∆4 0 −
1
8 −

1
12 −

1
8 0 0 0 0 0 0

∆5 0 −
1
8 0 0 1

16 0 0 −
1
8 0 0

∆6 0 1
8 0 1

8 0 0 0 3
8 0 0

∆7
1
8

1
8 0 0 0 0 0 −

1
8 0 0

∆8 0 0 0 0 0 0 0 −
1
4 0 0

∆9 0 0 0 0 −
1
8 0 0 0 0 0



S. Shadrin, I. Shneiberg / Journal of Geometry and Physics 57 (2007) 597–615 613

D1 D2 D3 E1 E2 F1 F2 F3 F4 G1

∆10 0 −
1
8 0 −

1
8 0 −

1
8

1
8 −

1
8 0 1

8

∆11 0 1
8 0 −

1
8 0 1

8 −
1
8

1
8 0 0

∆12 0 0 0 0 0 0 0 0 0 0
∆13 0 0 0 0 0 0 0 0 0 0
∆14 0 0 0 0 0 0 0 0 0 0
∆15 0 0 0 0 0 0 0 0 0 0
∆16 −

1
4 0 −

1
4 −

1
4 −

1
8 0 −

1
4 0 −

1
4 0

∆17
1
4 0 1

4 0 0 0 3
4 0 3

4
1
4

∆18 0 0 1
4 0 0 0 −

3
4 0 −

3
4 −

1
2

∆19 0 0 0 0 1
4 0 0 0 0 0

∆20 0 0 0 1
2 0 0 0 0 0 −

1
4

G2 H1 H2 H3 I1 I2 J1 J2 J3 K1

∆1 0 0 0 0 0 0 0 0 0 0
∆2 0 0 0 0 0 0 0 0 0 0
∆3 0 −

1
8 −

1
12 0 0 0 0 0 0 0

∆4 0 0 0 0 0 0 0 0 0 0
∆5 0 2

16 0 0 0 0 0 1
8 0 0

∆6 0 −
1
8 0 0 0 0 1

4 −
1
4 0 0

∆7 0 −
1
8 0 0 0 1

4 −
1
4 0 0 0

∆8 0 0 0 0 1
8 0 −

1
4

1
8 0 0

∆9 0 0 0 1
8 0 0 0 0 0 1

288

∆10 0 1
8 0 0 0 0 0 0 0 0

∆11
1
4 −

1
8 0 −

1
8 0 0 0 0 0 −

1
96

∆12 0 0 0 0 0 0 0 0 0 0
∆13 0 0 0 0 0 0 0 0 0 0
∆14 0 0 0 0 0 0 0 0 0 0
∆15 0 0 0 0 0 0 0 0 0 0
∆16

1
4 0 1

4
1
4 0 −

1
2 0 0 1

4 0

∆17 −
1
4 0 −

1
4 −

1
4 −

1
2

1
2 0 0 0 0

∆18 −
1
4 0 −

1
4 −

1
4

3
4 0 0 0 −

3
4 0

∆19 0 0 0 −
1
4 0 0 0 0 0 −

1
24

∆20 −
1
2 0 0 1

4 0 0 0 0 0 1
8

K2 L1 L2 M1 M2 M3 M4 M5 N1 N2

∆1 0 0 0 0 0 0 0 0 0 0
∆2 0 0 0 0 0 −

1
96 0 0 0 0

∆3 0 0 0 0 0 0 0 0 0 0
∆4 0 0 0 −

1
96 −

1
96 0 0 0 0 0

∆5 0 0 0 0 0 0 0 0 0 0
∆6 0 0 0 0 0 0 0 0 1

96
1
96

∆7 0 0 0 0 0 0 0 0 −
1
48 −

1
48

∆8 0 0 0 0 0 0 0 0 0 0
∆9

1
288 0 0 0 0 1

96 0 0 0 0

∆10 0 0 0 1
96

1
96 0 0 0 0 0
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K2 L1 L2 M1 M2 M3 M4 M5 N1 N2

∆11 −
1

96 0 0 0 0 0 0 0 −
1

96 −
1
96

∆12 0 0 0 0 0 −
1
8 0 0 0 0

∆13 0 0 0 −
1
8 −

1
8 0 0 0 −

1
8 −

1
8

∆14 0 −
1
8 −

1
8 0 0 0 0 0 1

4
1
4

∆15 0 1
8

1
8

1
8

1
8

1
8

1
8

1
4 −

1
8 −

1
8

∆16 0 0 0 0 0 1
8

1
96

1
48 0 0

∆17 0 0 0 1
8

1
8 0 0 0 0 0

∆18 0 1
8

1
8 0 0 0 0 0 0 0

∆19 −
1

24 0 0 0 0 −
1
8 0 0 0 0

∆20
1
8 0 0 −

1
8 −

1
8 0 0 0 1

8
1
8

N3 N4 N5 O1 O2 O3 O4 P1 P2 P3

∆1 0 0 0 0 0 0 0 0 0 0
∆2 0 0 0 0 0 0 0 0 0 0
∆3 0 0 0 0 0 0 0 0 0 0
∆4 0 0 0 0 0 0 0 0 0 0
∆5

1
96 0 0 −

1
96

1
96 0 0 0 −

1
96 −

1
96

∆6 −
1

48 0 0 1
96 −

1
96 0 0 −

1
96 0 0

∆7
1

96 0 0 0 −
1

96 −
1
96 0 0 0 1

96

∆8 0 0 0 0 0 0 0 0 0 0
∆9 0 0 0 0 −

1
96 0 −

1
96 0 1

96 0
∆10 0 0 0 0 0 0 0 0 0 0
∆11 −

1
96 −

1
96 −

1
48 0 1

96 0 1
96

1
96 0 1

96

∆12 −
1
8 0 0 1

8 −
1
8 0 0 0 1

8
1
8

∆13
1
4 0 0 −

1
8

1
8 0 0 1

8 0 0

∆14 −
1
8 0 0 0 1

8
1
8 0 0 0 −

1
8

∆15 0 0 0 0 −
1
8 −

1
8 0 −

1
8 −

1
8 0

∆16 0 0 0 0 0 0 0 0 0 0
∆17 0 0 0 0 0 0 0 0 0 0
∆18 0 0 0 0 0 0 0 0 0 0
∆19 0 0 0 0 1

8 0 1
8 0 −

1
8 0

∆20
1
8

1
8

1
4 0 −

1
8 0 −

1
8 −

1
8 0 −

1
8

Q1 Q2 Q3 R S1 S2 S3 T1 T2 U

∆1 0 0 0 0 0 0 0 0 0 0
∆2 0 0 0 0 0 0 0 0 0 0
∆3 0 0 0 0 0 0 0 0 0 0
∆4 0 0 0 0 0 0 0 0 0 0
∆5 0 0 0 0 −

1
48 0 0 1

2304
1

2304
1

1152

∆6 0 0 0 0 1
48 −

1
48 0 0 0 0

∆7 0 0 0 0 0 1
48 −

1
48 0 0 0

∆8 0 0 0 0 0 0 0 0 0 0
∆9 0 0 0 0 0 0 0 0 0 0
∆10 0 0 0 0 0 0 0 0 0 0
∆11 0 0 0 0 0 0 0 0 0 0
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Q1 Q2 Q3 R S1 S2 S3 T1 T2 U

∆12 0 0 0 0 1
4 0 0 −

1
96 −

1
48 −

1
48

∆13 0 0 0 0 −
1
4

1
4 0 0 0 0

∆14 −
1
4 −

1
4 −

1
4 0 0 −

1
4

1
4 0 0 0

∆15
1
4

1
4

1
4

1
4 0 0 −

1
4 0 0 0

∆16 0 0 0 1
48 0 0 0 0 0 0

∆17 0 0 0 0 0 0 0 0 0 0
∆18

1
4

1
4

1
4 0 0 0 0 0 0 0

∆19 0 0 0 0 0 0 0 0 0 0
∆20 0 0 0 0 0 0 0 0 0 0
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